CoMoDo: identifying dynamic protein domains based on covariances of motion.

نویسندگان

  • Silke A Wieninger
  • G Matthias Ullmann
چکیده

Most large proteins are built of several domains, compact units which enable functional protein motions. Different domain assignment approaches exist, which mostly rely on concepts of stability, folding, and evolution. We describe the automatic assignment method CoMoDo, which identifies domains based on protein dynamics. Covariances of atomic fluctuations, here calculated by an Elastic Network Model, are used to group residues into domains of different hierarchical levels. The so-called dynamic domains facilitate the study of functional protein motions involved in biological processes like ligand binding and signal transduction. By applying CoMoDo to a large number of proteins, we demonstrate that dynamic domains exhibit features absent in the commonly assigned structural domains, which can deliver insight into the interactions between domains and between subunits of multimeric proteins. CoMoDo is distributed as free open source software at www.bisb.uni-bayreuth.de/CoMoDo.html .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Behavior of Anisotropic Protein Microtubules Immersed in Cytosol Via Cooper–Naghdi Thick Shell Theory

In the present research, vibrational behavior of anisotropic protein microtubules (MTs) immersed in cytosol via Cooper–Naghdi shell model is investigated. MTs are hollow cylindrical structures in the eukaryotic cytoskeleton which surrounded by filament network. The temperature effect on vibration frequency is also taken into account by assuming temperature-dependent material properties for MTs....

متن کامل

Modified Couple Stress Theory for Vibration of Embedded Bioliquid-Filled Microtubules under Walking a Motor Protein Including Surface Effects

Microtubules (MTs) are fibrous and tube-like cell substructures exist in cytoplasm of cells which play a vital role in many cellular processes. Surface effects on the vibration of bioliquid MTs surrounded by cytoplasm is investigated in this study. The emphasis is placed on the effect of the motor protein motion on the MTs. The MT is modeled as an orthotropic beam and the surrounded cytoplasm i...

متن کامل

Approximate Incremental Dynamic Analysis Using Reduction of Ground Motion Records

Incremental dynamic analysis (IDA) requires the analysis of the non-linear response history of a structure for an ensemble of ground motions, each scaled to multiple levels of intensity and selected to cover the entire range of structural response. Recognizing that IDA of practical structures is computationally demanding, an approximate procedure based on the reduction of the number of ground m...

متن کامل

Investigating on the Effects of Random Irregularities of Railway Track by Half-Bogie Model

The vibrations produced by trains include two parts which are deterministic and random vibrations. Due to variation of dynamic loads and patterns of load-time, the random vibration of moving train is one of the most important issues in the field of railway engineering. One of the important sources in producing the train vibrations is rail roughness and irregularities. In this paper, responses o...

متن کامل

Numerical Solution of the Symmetric Water Impact of a Wedge Considering Dynamic Equations of Motion

In this research, numerical simulation of a symmetric impact of a 2-D wedge, considering dynamic equations in two-phase flow is taken into account. The two-phase flow around the wedge is solved based on finite volume method and volume of fluid (VOF) scheme. The dynamic mesh model is used to simulate dynamic motion of the wedge, thereby the effects of different dynamic meshes in both structured ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 11 6  شماره 

صفحات  -

تاریخ انتشار 2015